
SHA-1
backdooring and exploitation

brought to you by

Maria Eichlseder, Florian Mendel, Martin Schläffer
TU Graz, .at; cryptanalysis

@angealbertini
Corkami, .de; binary kung-fu

@veorq
Kudelski Security, .ch; theory and propaganda :-)

1. WTF is a hash function backdoor?
2. backdooring SHA1 with cryptanalysis
3. exploitation! collisions!

TL;DR:

who’s interested in crypto backdoors?

& Dual_EC speculation — https://projectbullrun.org

Clipper (1993)

crypto researchers?

Young/Yung malicious cipher (2003)
- compresses texts to leak key bits in ciphertexts
- blackbox only (internals reveal the backdoor)
- other “cryptovirology” schemes

2011: theoretical framework, but nothing useful

what’s a crypto backdoor?

not an implementation backdoor

example: RC4 C implementation (Wagner/Biondi)

#define TOBYTE(x) (x) & 255
#define SWAP(x,y) do { x^=y; y^=x; x^=y; } while (0)

static unsigned char A[256];
static int i=0, j=0;

unsigned char encrypt_one_byte(unsigned char c) {
 int k;
 i = TOBYTE(i+1);
 j = TOBYTE(j + A[i]);
 SWAP(A[i], A[j]);
 k = TOBYTE(A[i] + A[j]);
 return c ^ A[k];
}

a backdoor (covert) isn’t a trapdoor (overt)

RSA has a trapdoor, NSA has backdoors

VSH is a trapdoor hash based on RSA

backdoor in a crypto hash?

“some secret property that allows you to
efficiently break the hash”

“break” can be about collisions, preimages…
how to model the stealthiness of the backdoor…

exploitation can be deterministic or randomized…

role reversal

Eve wants to achieve some security property
Alice and Bob (the users) are the adversaries

definitions
malicious hash = pair of algorithms

exploit() either “static” or “dynamic”

generate()randomness
hash function H

backdoor b

exploit()
hash function H

collision/preimagebackdoor b
challenge

taxonomy
static collision backdoor

returns constant m and m’ such that H(m)=H(m’)

dynamic collision backdoor
returns random m and m’ such that H(m)=H(m’)

static preimage backdoor
returns m such that H(m) has low entropy

dynamic preimage backdoor
given h, returns m such that H(m)=h

stealth definitions
undetectability vs undiscoverability

detect() may also return levels of suspicion
H may be obfuscated...

detect()hash function H exploit() ?

discover()
hash function H

backdoor b
exploit()

our results
dynamic collision backdoor

valid structured files with arbitrary payloads

detectable, but undiscoverable
and as hard to discover as to break SHA-1

SHA-1

SHA-1
everywhere

RSA-OAEP, “RSAwithSHA1”, HMAC, PBKDF2, etc.
⇒ in TLS, SSH, IPsec, etc.

integrity check: git, bootloaders, HIDS/FIM, etc.

SHA-1

but no collision published yet
actual complexity unclear (>260)

Differential cryptanalysis for collisions
“perturb-and-correct”

2 stages (offline/online)

1. find a good differential characteristic
= one of high probability

2. find conforming messages
with message modification techniques

find a characteristic: linearization

low-probability

high-probability

2-40 2-15

2-40

find conforming messages
low-probability part: “easy”, K1 unchanged
use automated tool to find a conforming message

round 2: try all 232 K2‘s, repeat 28 times (cost 240)
consider constant K2 as part of the message!

round 3: do the same to find a K3 (total cost 248)
repeating the 240 search of K2 2

8 times….

round 4: find K4 in negligible time

iterate to minimize the differences in the constants...

collision!

1-block, vs. 2-block collisions for previous attacks

empty

but it’s not the real SHA-1!

“custom” standards are common in
proprietary systems

(encryption appliances, set-top boxes, etc.)

motivations:
customer-specific crypto (customers’ request)

“other reasons”

how to turn garbage collisions
into useful collisions?

(= 2 valid files with arbitrary content)

basic idea

where H(M1)=H(M2)
and Mx is essentially “process payload x”

M1

M2

Payload1 Payload2

Payload1 Payload2

constraints

differences (only in) the first block

difference in the first four bytes
⇒ 4-byte signatures corrupted

PE? (Win* executables, etc.)

differences forces EntryPoint to be at > 0x40000000
⇒ 1GiB (not supported by Windows)

PE = fail

ELF, Mach-O = fail
(≥ 4-byte signature at offset 0)

shell scripts?

#<garbage, 63 bytes>

#<garbage with differences>

EOL

<check for block’s content>

//block 1 start

//block 2 start

//same payload

RAR/7z

scanned forward

≥ 4-byte signature :-(

but signature can start at any offset :-D
⇒ payload = 2 concatenated archives

killing the 1st signature byte disables the top archive

COM/MBR?

COM/MBR
(DOS executable/Master Boot Record)

no signature!

start with x86 (16 bits) code at offset 0

like shell scripts, skip initial garbage

JMP to distinct addr rather than comments

JMP address1

JMP address2

address1:

<payload1>

address2:

<payload2>

//block 1 start

//block 2 start

//common payload

JPEG?

JPEG

2-byte signature 0xFFD8

sequence of chunks

idea
message 1: first chunk “commented”

message 2: first chunk processed

polyglots

2 distinct files, 3 valid file formats!

~virtual multicollisions

> msha1.py mbr_shell_rar*.pdf 5a827999 82b1c71a 5141963a b389abb9
mbr_shell_rar0.pdf 10382a6d3c949408d7cafaaf6d110a9e23230416
mbr_shell_rar1.pdf 10382a6d3c949408d7cafaaf6d110a9e23230416

> msha1.py jpg-rar*.jpg 5a827999 9b73a440 71599fc5 0c8a53e4
jpg-rar0.jpg 7a00042714d8ee6f4978193b07df705b652d0e39
jpg-rar1.jpg 7a00042714d8ee6f4978193b07df705b652d0e39

more magic: just 2 files here

Conclusions

Implications for SHA-1 security?

None.
We did not improve attacks on the

unmodified SHA-1.

Did NSA use this trick when
designing SHA-1 in 1995?

Probably not, because
1) cryptanalysis techniques are known since ~2004
2) the constants look like NUMSN (√2 √3 √5 √10)
3) remember the SHA-0 fiasco :)

Can you do the same for SHA-256?

Not at the moment.

Good: SHA-256 uses distinct constants at each step
⇒more control to conform to the characteristic

(but also more differences with the original)

Not good: The best known attack is on 31 steps
(in ~265), of 64 steps in total, so it might be difficult to
find a useful 64-step characteristic

thank you! questions?

Roads? Where we're going, we don't need roads.

malicioussha1.github.io malicioussha1@131002.net

