
Eve’s SHA3 candidate: malicious hashing

Jean-Philippe Aumasson

1 / 23

Background

Definitions

Strategies

BLAKE tweak

2 / 23

Terminology remark: in this talk/paper
I Trapdoor: known to exist, difficult to find (RSA)
I Backdoor: not known to exist (NSA)

(Maybe not the best illustration)

3 / 23

Special credentials in Wargames’ WOPR supercomputer

Linux 2.6 modified kernel/exit.c

--- GOOD 2003-11-05 13:46:44.000000000 -0800

+++ BAD 2003-11-05 13:46:53.000000000 -0800

@@ -1111,6 +1111,8 @@

schedule();

goto repeat;

}
+ if ((options == (WCLONE| WALL)) && (current->uid = 0))

+ retval = -EINVAL;

retval = -ECHILD;

end wait4:

4 / 23

Thompson’s malicious gcc

Trojans, RAT’s, rootkits, etc. (system backdoors)

5 / 23

Implementation backdoors:
I Hardware trojans, bug attacks
I Pure SW backdoor (cf. Wagner/Biondi’s RC4)
I Weak RNG/entropy attacks (PGP. . .)

Sabotaged/weak crypto: Clipper chip, A5/2, etc.

6 / 23

Failed attempt based on weak S-boxes. . .

Young/Yung malicious blackbox cipher:

Exploit Huffman-compressible texts
to leak key bits in ciphertexts

Plus other “cryptovirology” schemes

7 / 23

Previous attempts of malicious block ciphers, stream ciphers,
PRNG; what about malicious hash functions?

First thoughts:
I Goal not (only) key recovery: room for new techniques
I Can affect several schemes where the hash is used
I Different from trapdoor hash functions (VSH etc.)

Two approaches:
I “A priori”: new design from scratch
I “a posteriori”: modify existing hash

Many real-world applications. . .

8 / 23

Context
Eve designs a proprietary hash to integrate in PONY’s
GameStation 3 game console. The hash is used to sign boot
code and executables. Digest are processed with a secure
ECDSA implementation.

Backdoor
Eve (and only her) can compute meaningful second preimages

Exploit
Custom OS, piracy, homebrew software, blackmail

9 / 23

Context
Eve submits her EvilHash to SHA3 and wins the competition

Backdoor
Eve knows two colliding messages (and not more)

Exploit
She sells, or anonymously publishes the collision for fun

10 / 23

Malicious hash function = adversary = pair of algorithms:
I Malicious generator: returns hash H and backdoor b
I Exploit algorithm: given b and additional info, “breaks” H

Two types of backdoors (i.e. adversaries):
I Static: deterministic exploit algorithm
I Dynamic: probabilistic exploit, e.g. based on challenge

Good guys Alice and Bob will be Eve’s adversaries. . .

11 / 23

Adversaries breaking standard security notions:
I Static collision adversary
I Dynamic (second) preimage adversary
I Dynamic key-recovery adversary

Static preimage adversary
I Find preimage(s) of some low-entropy digest
I E.g. all-zero, repeated-byte, ASCII string, etc.
I Practically relevant, but no theor’y sound

Static distinguisher
I Finds N inputs satisfying some relation
I E.g. multicollision, linear dependencies
I Relation needs be “convincing”

12 / 23

Security goals:
I Undetectability
I Undiscoverability

Undetectability:
I Exploit algorithm difficult to describe
I Avoid reasonable suspicion

Input: “canonical” description of the algorithm

In practice, obfuscation may be used. . . related problem of
white-box ciphers (a.k.a. “symmetric public-key schemes”)

13 / 23

Backdoor-in-the-middle
I Connect input and outputs within a permutation
I Applies to blockcipher-based compression, sponges

Simple example:
I Split (keyed) permutation in three parts

Π = Π2 ◦ Π1 ◦ Π0

I For some chosen input(s) and output(s), modify/create Π1
to connect the two parts

14 / 23

Malicious finalization
I Exploit entropy loss from two or more legit final states
I Either hash finalization (as in SIMD, Grøstl) or local

(BLAKE, Hamsi)

Simple example:
I Collect final states of 2 chosen messages
I Choose a shrinking linear map such that

I the two states collide
I the equations look unsuspicious

15 / 23

Weak mode trigger
I Enter a weak internal state, then exploit it
I Can be a fixed-point, the IV of a sponge (2nd preimages)

Simple example:
I Find a fixed-point Em(h)⊕ h = h and set h as IV
I Use the backdoor m to find second preimages
I Works for wide-pipes, HAIFA

16 / 23

Freedom degrees from
I Operators (e.g. choose between +, −, ⊕)
I Ordering (e.g. x + (y ⊕ z) vs. (x + y)⊕ z)
I Constants (rotation distances, additive constants, #rounds)

Notion of neutral structure = algorithm composed of wildcard
characters with high enough total entropy, e.g.

s0 = s1 + x

s1 = s2 ⊕ y

s2 = s3 + z

s3 = s0 ? ((s1 • s2) � (s3 ≫ n)

where x , y , z are chosen from a set of C constants; ?, • and �
are one of B binary operators; n is in {1, . . . ,31}

Total entropy 3 log2 C + 3 log2 B + log2(31)

17 / 23

Stealth strategies
I “Entropy spraying” aka needles-in-a-haystack: better for

most a posteriori backdoors (but e.g. HPC)
I “Chameleon” aka needles-in-a-needlestack: an option for a

priori designs

Not just math but social-engineering

No measurable “cross-section”

Automated tools may help

18 / 23

Eve is a consultant paid to improve BLAKE’s security
She replaces BLAKE’s simplistic finalization

hi+ = vi ⊕ vi+8, i = 0, . . . ,7
with the “more secure”

((v0 ⊕ v1) ≫ 11) + ((v2 ⊕ v3) ≫ 18) + ((v4 ⊕ v5) ≫ 11) ⊕ ((v6 + v7) ≫ 20) ⊕ ((v8 + v9) ≫ 19)

((v1 ⊕ v2) ≫ 17) + ((v3 ⊕ v4) ≫ 16) + ((v5 ⊕ v6) ≫ 28) ⊕ ((v7 + v8) ≫ 10) + ((v9 + v10) ≫ 30)

((v2 ⊕ v3) ≫ 12) + ((v4 + v5) ≫ 17) ⊕ ((v6 ⊕ v7) ≫ 13) ⊕ ((v8 + v9) ≫ 22) ⊕ ((v10 ⊕ v11) ≫ 7)

((v3 ⊕ v4) ≫ 7) ⊕ ((v5 ⊕ v6) ≫ 5) ⊕ ((v7 + v8) ≫ 11) + ((v9 + v10) ≫ 2) ⊕ ((v11 + v12) ≫ 9)

((v4 ⊕ v5) ≫ 6) + ((v6 + v7) ≫ 6) + ((v8 ⊕ v9) ≫ 4) + ((v10 ⊕ v11) ≫ 21) ⊕ ((v12 + v13) ≫ 15)

((v5 + v6) ≫ 4) + ((v7 + v8) ≫ 30) + ((v9 ⊕ v10) ≫ 30) + ((v11 + v12) ≫ 29) + ((v13 ⊕ v14) ≫ 2)

((v6 ⊕ v7) ≫ 22) ⊕ ((v8 ⊕ v9) ≫ 1) ⊕ ((v10 + v11) ≫ 30) ⊕ ((v12 ⊕ v13) ≫ 22) + ((v14 + v15) ≫ 21)

((v7 + v8) ≫ 19) ⊕ ((v9 + v10) ≫ 8) + ((v11 + v12) ≫ 25) ⊕ ((v13 ⊕ v14) ≫ 15) ⊕ ((v15 ⊕ v0) ≫ 10)

19 / 23

I The new BLAKE is at least as secure as the original
(“provable undiscoverability”, “plausible deniability”)

I Eve knows a collision for the compression function,
between two chosen messages (here “YES” and “NO”)

I She can use it to generate many hash collisions
I She used the neutral structure

(v0 • v1) ≫ r1 • (v2 • v3) ≫ r2 • (v4 • v5) ≫ r3 • (v6 • v7) ≫ r4 • (v8 • v9) ≫ r5

I Any new malicious instance generated within seconds

20 / 23

Conclusions

21 / 23

Malicious cryptography is academia-understudied

First published work about malicious hashing

Rich playground for malicious designers

Numerous real-life applications (not only malicious ones)

Research goals include awareness and malware prevention

Future work:
I More/better definitions
I Refined backdoor strategies
I Advanced detection strategies
I Hashing vs. implementations (SW/HW) backdoors
I Theoretical connections with obfuscation, WBC, etc.
I Quantum backdoors?

22 / 23

Eve’s SHA3 candidate: malicious hashing

Jean-Philippe Aumasson

23 / 23

