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Terminology remark: in this talk/paper
I Trapdoor: known to exist, difficult to find (RSA)
I Backdoor: not known to exist (NSA)

(Maybe not the best illustration)
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Special credentials in Wargames’ WOPR supercomputer

Linux 2.6 modified kernel/exit.c

--- GOOD 2003-11-05 13:46:44.000000000 -0800

+++ BAD 2003-11-05 13:46:53.000000000 -0800

@@ -1111,6 +1111,8 @@

schedule();

goto repeat;

}
+ if ((options == ( WCLONE| WALL)) && (current->uid = 0))

+ retval = -EINVAL;

retval = -ECHILD;

end wait4:
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Thompson’s malicious gcc

Trojans, RAT’s, rootkits, etc. (system backdoors)
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Implementation backdoors:
I Hardware trojans, bug attacks
I Pure SW backdoor (cf. Wagner/Biondi’s RC4)
I Weak RNG/entropy attacks (PGP. . . )

Sabotaged/weak crypto: Clipper chip, A5/2, etc.

6 / 23



Failed attempt based on weak S-boxes. . .

Young/Yung malicious blackbox cipher:

Exploit Huffman-compressible texts
to leak key bits in ciphertexts

Plus other “cryptovirology” schemes
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Previous attempts of malicious block ciphers, stream ciphers,
PRNG; what about malicious hash functions?

First thoughts:
I Goal not (only) key recovery: room for new techniques
I Can affect several schemes where the hash is used
I Different from trapdoor hash functions (VSH etc.)

Two approaches:
I “A priori”: new design from scratch
I “a posteriori”: modify existing hash

Many real-world applications. . .
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Context
Eve designs a proprietary hash to integrate in PONY’s
GameStation 3 game console. The hash is used to sign boot
code and executables. Digest are processed with a secure
ECDSA implementation.

Backdoor
Eve (and only her) can compute meaningful second preimages

Exploit
Custom OS, piracy, homebrew software, blackmail
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Context
Eve submits her EvilHash to SHA3 and wins the competition

Backdoor
Eve knows two colliding messages (and not more)

Exploit
She sells, or anonymously publishes the collision for fun
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Malicious hash function = adversary = pair of algorithms:
I Malicious generator: returns hash H and backdoor b
I Exploit algorithm: given b and additional info, “breaks” H

Two types of backdoors (i.e. adversaries):
I Static: deterministic exploit algorithm
I Dynamic: probabilistic exploit, e.g. based on challenge

Good guys Alice and Bob will be Eve’s adversaries. . .
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Adversaries breaking standard security notions:
I Static collision adversary
I Dynamic (second) preimage adversary
I Dynamic key-recovery adversary

Static preimage adversary
I Find preimage(s) of some low-entropy digest
I E.g. all-zero, repeated-byte, ASCII string, etc.
I Practically relevant, but no theor’y sound

Static distinguisher
I Finds N inputs satisfying some relation
I E.g. multicollision, linear dependencies
I Relation needs be “convincing”
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Security goals:
I Undetectability
I Undiscoverability

Undetectability:
I Exploit algorithm difficult to describe
I Avoid reasonable suspicion

Input: “canonical” description of the algorithm

In practice, obfuscation may be used. . . related problem of
white-box ciphers (a.k.a. “symmetric public-key schemes”)
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Backdoor-in-the-middle
I Connect input and outputs within a permutation
I Applies to blockcipher-based compression, sponges

Simple example:
I Split (keyed) permutation in three parts

Π = Π2 ◦ Π1 ◦ Π0

I For some chosen input(s) and output(s), modify/create Π1
to connect the two parts
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Malicious finalization
I Exploit entropy loss from two or more legit final states
I Either hash finalization (as in SIMD, Grøstl) or local

(BLAKE, Hamsi)

Simple example:
I Collect final states of 2 chosen messages
I Choose a shrinking linear map such that

I the two states collide
I the equations look unsuspicious
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Weak mode trigger
I Enter a weak internal state, then exploit it
I Can be a fixed-point, the IV of a sponge (2nd preimages)

Simple example:
I Find a fixed-point Em(h)⊕ h = h and set h as IV
I Use the backdoor m to find second preimages
I Works for wide-pipes, HAIFA
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Freedom degrees from
I Operators (e.g. choose between +, −, ⊕)
I Ordering (e.g. x + (y ⊕ z) vs. (x + y)⊕ z)
I Constants (rotation distances, additive constants, #rounds)

Notion of neutral structure = algorithm composed of wildcard
characters with high enough total entropy, e.g.

s0 = s1 + x

s1 = s2 ⊕ y

s2 = s3 + z

s3 = s0 ? ((s1 • s2) � (s3 ≫ n)

where x , y , z are chosen from a set of C constants; ?, • and �
are one of B binary operators; n is in {1, . . . ,31}

Total entropy 3 log2 C + 3 log2 B + log2(31)
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Stealth strategies
I “Entropy spraying” aka needles-in-a-haystack: better for

most a posteriori backdoors (but e.g. HPC)
I “Chameleon” aka needles-in-a-needlestack: an option for a

priori designs

Not just math but social-engineering

No measurable “cross-section”

Automated tools may help
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Eve is a consultant paid to improve BLAKE’s security
She replaces BLAKE’s simplistic finalization

hi+ = vi ⊕ vi+8, i = 0, . . . ,7
with the “more secure”

((v0 ⊕ v1) ≫ 11) + ((v2 ⊕ v3) ≫ 18) + ((v4 ⊕ v5) ≫ 11) ⊕ ((v6 + v7) ≫ 20) ⊕ ((v8 + v9) ≫ 19)

((v1 ⊕ v2) ≫ 17) + ((v3 ⊕ v4) ≫ 16) + ((v5 ⊕ v6) ≫ 28) ⊕ ((v7 + v8) ≫ 10) + ((v9 + v10) ≫ 30)

((v2 ⊕ v3) ≫ 12) + ((v4 + v5) ≫ 17) ⊕ ((v6 ⊕ v7) ≫ 13) ⊕ ((v8 + v9) ≫ 22) ⊕ ((v10 ⊕ v11) ≫ 7)

((v3 ⊕ v4) ≫ 7) ⊕ ((v5 ⊕ v6) ≫ 5) ⊕ ((v7 + v8) ≫ 11) + ((v9 + v10) ≫ 2) ⊕ ((v11 + v12) ≫ 9)

((v4 ⊕ v5) ≫ 6) + ((v6 + v7) ≫ 6) + ((v8 ⊕ v9) ≫ 4) + ((v10 ⊕ v11) ≫ 21) ⊕ ((v12 + v13) ≫ 15)

((v5 + v6) ≫ 4) + ((v7 + v8) ≫ 30) + ((v9 ⊕ v10) ≫ 30) + ((v11 + v12) ≫ 29) + ((v13 ⊕ v14) ≫ 2)

((v6 ⊕ v7) ≫ 22) ⊕ ((v8 ⊕ v9) ≫ 1) ⊕ ((v10 + v11) ≫ 30) ⊕ ((v12 ⊕ v13) ≫ 22) + ((v14 + v15) ≫ 21)

((v7 + v8) ≫ 19) ⊕ ((v9 + v10) ≫ 8) + ((v11 + v12) ≫ 25) ⊕ ((v13 ⊕ v14) ≫ 15) ⊕ ((v15 ⊕ v0) ≫ 10)
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I The new BLAKE is at least as secure as the original
(“provable undiscoverability”, “plausible deniability”)

I Eve knows a collision for the compression function,
between two chosen messages (here “YES” and “NO”)

I She can use it to generate many hash collisions
I She used the neutral structure

(v0 • v1) ≫ r1 • (v2 • v3) ≫ r2 • (v4 • v5) ≫ r3 • (v6 • v7) ≫ r4 • (v8 • v9) ≫ r5

I Any new malicious instance generated within seconds
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Conclusions
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Malicious cryptography is academia-understudied

First published work about malicious hashing

Rich playground for malicious designers

Numerous real-life applications (not only malicious ones)

Research goals include awareness and malware prevention

Future work:
I More/better definitions
I Refined backdoor strategies
I Advanced detection strategies
I Hashing vs. implementations (SW/HW) backdoors
I Theoretical connections with obfuscation, WBC, etc.
I Quantum backdoors?
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