# State of the hash: SHA-3 and beyond

Jean-Philippe Aumasson



#### Agenda

- Background material
- NIST's SHA-3 competition
- The SHA-3 candidate BLAKE
- Updated cryptanalysis of Skein
- ► On lightweight hashing (QUARK)
- Conclusions

### What is a crypto hash?



HASH, x. There is no definition for this word—nobody knows what hash is. Ambrose Bierce, The Devil's Dictionary

#### Arbitrary long string $\xrightarrow{H}$ Short random-looking string

a.k.a.

- Modification detection codes
- Message authentication codes (when keyed)
- Cryptographers' Swiss Army Knives

### Applications of hash functions

Generation of secure keys

H(physical entropy)

Key derivation

H(salt, password)

Digital signatures

Sign(H(salt, message))

MAC's

H(key, message)

### Applications of hash functions

Passwords storage

H(salt, password)

Forensics, e.g., proofs of non-modification

H(key, evidence)

Random oracles in protocols, e.g. challenge-response

H(key, random challenge)

Construction of pseudorandom generators

H(key,nonce,1), H(key,nonce,2),...

Hash functions in standards: DSS, PKCS #1, NIST SP 800-108 (HMAC), -56a (key derivation), -106 (randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace ( $\approx$ 850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses

Hash functions in standards: DSS, PKCS #1, NIST SP 800-108 (HMAC), -56a (key derivation), -106 (randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace ( $\approx$ 850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses

 $\Rightarrow$  we need good hash algorithms!

Difficult to define "goodness":

- Many different security requirements, sometimes difficult to formalize and weigh
- Many performance metrics and platforms (HW vs SW; speed vs. space, etc.)

#### Security requirements

- ► Collision resistance [*it* should be hard to...] find  $M \neq M'$  s.t. H(M) = H(M')
- ► Second preimage resistance given *M* find  $M' \neq M$  s.t. H(M) = H(M')
- Preimage resistance

given H(M) (but not M) find M' s.t. H(M) = H(M')

### Security requirements

- ► Collision resistance [*it* should be hard to...] find  $M \neq M'$  s.t. H(M) = H(M')
- ► Second preimage resistance given *M* find  $M' \neq M$  s.t. H(M) = H(M')
- ► Preimage resistance given H(M) (but not M) find M' s.t. H(M) = H(M')
- ► Pseudorandomness distinguish H(K, ·) from a random function
- ► Unpredictability predict H(K, M) for unqueried M's
- Indifferentiability

find "related" sets of input/output values

► Etc.

#### Generic methods

i.e. that work for any *n*-bit hash function

- **Collision**: birthday search in  $O(2^{n/2})$
- ► (Second) preimage: bruteforce search in O(2<sup>n</sup>)
- **Pseudorandomness**: exhaustive search in  $O(2^{|K|})$
- Unpredictability: exhaustive search in  $O(2^{|K|})$
- Indifferentiability: depends on the relation

If a hash admits a method substantially faster than the best generic attack then it's "theoretically unideal"

#### An ideal hash function



### SHA-2 (2002)



#### NSA design, 224-, 256-, 384-, or 512-bit digests

Only attacks on reduced versions, but suffers "length extensions", "fixed points", "multicollisions", etc.

Current NIST recommendation

### SHA-1 (1995)



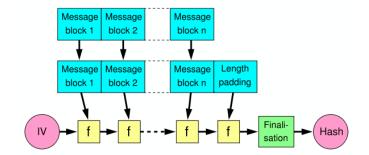
NSA design, 160-bit digests

Almost practical collision attacks ( $\approx 2^{60}$  vs.  $2^{80}$  ideally)

*"Federal agencies should stop using SHA-1 for digital signatures, digital time stamping and other applications that require collision resistance"* [NIST]

### MD5 (1991)




Ron Rivest design, 128-bit digests

Collisions can be found in milliseconds

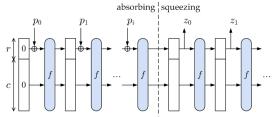
Can find colliding executables, colliding public-keys, etc.

Should now be avoided

#### The Merkle-Damgård construction



Length extension: can find H(M||padding||M') given only H(M) (application: forgery of MAC's).


### Beyond Merkle-Damgård

#### HAIFA [Biham-Dunkelman, 2006]

- Augmented version of Merkle-Damgård
- Counter to differentiate compression functions
- Proven "indifferentiable from a random oracle"

Sponge functions [Bertoni-Daemen-Peeters-Van Assche, 2007]

- Use a permutation rather than compression function
- Proven "indifferentiable from a random oracle"



#### NIST's SHA-3 competition



 $\approx AES$  competition for hash functions <code>http://nist.gov/hash-competition</code>

#### NIST's SHA-3 competition

- Nov 2007: SHA-3 competition announced
- Oct 2008: 64 submissions received
- ► Dec 2008: 51 accepted for first round
- ► Feb 2009: 1st SHA-3 Conference
- Jul 2009: 14 semifinalists announced
- Aug 2010: 2nd SHA-3 Conference
- end 2010: 4-6 finalists announced
- ► spring 2012: 3rd SHA-3 Conference
- ► sometime in 2012: winner announced

#### Formal requirements for SHA-3

- ► Support digests of 224, 256, 384, and 512 bits
- ► Support messages of at least 2<sup>64</sup> bits
- ► Support HMAC, randomized hashing, PRFs
- Resistance to length extension
- One-pass mode

"NIST expects SHA-3 to have a security strength that is at least as good as the hash algorithms currently specified in FIPS 1802, and that this security strength will be achieved with significantly improved efficiency." [NIST]

#### 64 submissions from all around the world

From both industry, academia, and government agencies

- ► EADS, Gemalto, Hitachi, IBM, Intel, Microsoft, Orange, Qualcomm, Sagem, Sony, STµ, etc.
- ENS (fr), EPFL, ETHZ (ch), KU Leuven (be), METU (tr), MIT (us), Weizmann Institute (il), etc.
- ► US Sandia Labs, French InfoSec Agency (DCSSI)

Great variety of designs

- AES-based
- ARX (Add, Rotate, Xor)
- Elliptic curve-based
- Parallel tree hashing (MD6)
- "Provably secure" (lattices, coding theory)

#### Many candidates broken

| Abacus       | Neil Sholer           | in round 1     | 2nd-preimage            |                  |
|--------------|-----------------------|----------------|-------------------------|------------------|
| ARIRANG      | Jongin Lim            | in round 1     |                         |                  |
| AURORA       | Masahiro Fujita       | in round 1     | 2nd preimage            |                  |
| Blender      | Colin Bradbury        | in round 1     | collision, preimage     | near-collision   |
| Boole        | Greg Rose             | in round 1     | collision               |                  |
| Cheetah      | Dmitry Khovratovich   | in round 1     |                         | length-extension |
| CHI          | Phillip Hawkes        | in round 1     |                         |                  |
| CRUNCH       | Jacques Patarin       | in round 1     |                         | length-extension |
| DCH          | David A. Wilson       | in round 1     | collision               |                  |
| Dynamic SHA  | Xu Zijie              | in round 1     | collision               | length-extension |
| Dynamic SHA2 | Xu Zijie              | in round 1     | collision               | length-extension |
| ECOH         | Daniel R. L. Brown    | in round 1     | 2nd preimage            |                  |
| Edon-R       | Danilo Gligoroski     | in round 1     | preimage                |                  |
| EnRUPT       | Sean O'Neil           | in round 1     | collision               |                  |
| ESSENCE      | Jason Worth Martin    | in round 1     | collision               |                  |
| FSB          | Matthieu Finiasz      | in round 1     |                         |                  |
| HASH 2X      | Jason Lee             | not in round 1 | 2nd-preimage            |                  |
| Khichidi-1   | M. ∀idyasagar         | in round 1     | collision               |                  |
| LANE         | Sebastiaan Indesteege | in round 1     |                         |                  |
| Lesamnta     | Hirotaka Yoshida      | in round 1     |                         |                  |
| LUX          | lvica Nikolić         | in round 1     | collision, 2nd preimage | DRBG,HMAC        |

http://ehash.iaik.tugraz.at/wiki/The\_SHA-3\_Zoo

#### Many candidates broken

| Maraca        | Robert J. Jenkins     | not in round 1 | preimage     |  |
|---------------|-----------------------|----------------|--------------|--|
| MCSSHA-3      | Mikhail Maslennikov   | in round 1     | 2nd preimage |  |
| MD6           | Ronald L Rivest       | in round 1     |              |  |
| MeshHash      | Björn Fay             | in round 1     | 2nd preimage |  |
| NaSHA         | Smile Markovski       | in round 1     | collision    |  |
| NKS2D         | Geoffrey Park         | not in round 1 | collision    |  |
| Ponic         | Peter Schmidt-Nielsen | not in round 1 | 2nd-preimage |  |
| SANDstorm     | Rich Schroeppel       | in round 1     |              |  |
| Sarmal        | Kerem Varici          | in round 1     | preimage     |  |
| Sgàil         | Peter Maxwell         | in round 1     | collision    |  |
| SHAMATA       | Orhun Kara            | in round 1     | collision    |  |
| Spectral Hash | Çetin Kaya Koç        | in round 1     | collision    |  |
| StreamHash    | Michal Trojnara       | in round 1     | collision    |  |
| SWIFFTX       | Daniele Micciancio    | in round 1     |              |  |
| Tangle        | Rafael Alvarez        | in round 1     | collision    |  |
| TIB3          | Daniel Penazzi        | in round 1     | collision    |  |
| Twister       | Michael Gorski        | in round 1     | preimage     |  |
| Vortex        | Michael Kounavis      | in round 1     | preimage     |  |
| WaMM          | John Washburn         | in round 1     | collision    |  |
| Waterfall     | Bob Hattersley        | in round 1     | collision    |  |
| ZK-Crypt      | Carmi Gressel         | not in round 1 |              |  |

http://ehash.iaik.tugraz.at/wiki/The\_SHA-3\_Zoo

### The 14 round-2 candidates

| Name               | Submitter | Origin      | Туре  |
|--------------------|-----------|-------------|-------|
| BLAKE              | Aumasson  | +           | ARX   |
| Blue Midnight Wish | Knapskog  |             | ARX   |
| CubeHash           | Bernstein |             | ARX   |
| ECHO               | Gilbert   |             | AES   |
| Fugue              | Jutla     |             | AES   |
| Groestl            | Knudsen   |             | AES   |
| Hamsi              | Küçük     |             | S-box |
| JH                 | Wu        | <b>(</b> :) | S-box |
| Keccak             | Daemen    |             | S-box |
| Luffa              | Watanabe  |             | S-box |
| Shabal             | Misarsky  |             | mix   |
| SHAvite-3          | Dunkelman | \$          | AES   |
| SIMD               | Leurent   |             | mix   |
| Skein              | Schneier  |             | ARX   |

#### Security

#### All round-2 candidates are yet unbroken

But some are less unbroken than others, due to

- Attacks for a large fraction of the total #rounds
- Attacks on building blocks (compression functions)
- Thin security margins

Impact of such results unclear, but reduces confidence... (SHA-3 should not "look" weaker than SHA-2!)

#### Software benchmarks on eBASH

| eBA                              | CS: ECR          | YPT Ben            | chmarking      | of | Cryptog   | graphi | ic Sys   | tems           |                    | CRYPT II<br>তি⊉U^ ‡    |
|----------------------------------|------------------|--------------------|----------------|----|-----------|--------|----------|----------------|--------------------|------------------------|
| General information:             | Introd           | uction             | eBASH          |    | eBASC     | eBA    | .TS      | S SUPERCOI     |                    | ECRYPT II<br>Computers |
| How to submit new software:      | Hash fu          | nctions            | Stream ciphers |    | DH functi | ons    | Public-l | cey encryption | Public-key signatu |                        |
| List of primitives measured:     | SHA-3 candidates | All hash functions | Stream ciphers |    | DH functi | ons    | Public-  | key encryption | ption Public-key s |                        |
| Measurements indexed by machine: | SHA-3 candidates | All hash functions | Stream ciphers |    | DH functi | ons    | Public-  | key encryption | F                  | ublic-key signatures   |

#### eBASH: ECRYPT Benchmarking of All Submitted Hashes

The eBASH (ECRYPT Benchmarking of All Submitted Hashes) project, part of eBACS, measures hash functions according to the following criteria:

- · Time to hash a 0-byte message
- · Time to hash a 1-byte message.
- · Time to hash a 2-byte message.
- ...
- Time to hash a 4096-byte message. (Of course, longer messages are also of interest, for typical hash functions one can reasonably extrapolate to long messages by subtracting 2048-byte timings from 4096-byte timings.)
- · Length of the hash output

"Time" refers to time on real computers time on an Intel Core 2 Quad, time on an AMD Athlon 64 X2, time on an IBM PowerPC C5 970, etc. The point of these cost measures is that they are directly visible to the cryptographic wer. eBASH times each hash function on a wide wairity of computers, ensuing direct comparability of all systems on whichever computers are of interest to the users.

There are separate pages explaining how to submit hash functions to eBASH, listing the hash functions already submitted to eBASH, and presenting the latest eBASH measurements.

#### Version

This is version 2010.09.03 of the ebash.html web page. This web page is in the public domain.

# Maintained by Daniel J. Bernstein and Tanja Lange http://bench.cr.yp.to/

#### Software benchmarks on eBASH

Based on the SUPERCOP toolkit (System for Unified Performance

Evaluation Related to Cryptographic Operations and Primitives)

## Implementations are collected and included in the latest SUPERCOP release

#### When run on your machine SUPERCOP does:

for each hash function H
for each implementation of H
for each relevant architecture (x86, amd64, etc.)
for each compiler available (gcc, icc, xlc, etc.)
for each compiler options set (from a defined set)
measure speed for various message lengths

The fastest combinations are reported on http://bench.cr.yp.to/results-sha3.html

#### eBASH example

#### x86, 2394MHz, Intel Core 2 Quad Q6600 (6fb), 2007, latour, supercop-20101002

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cyc      | les/byte | for long | messages     | C        | ycles/by | e for 40 | 96 bytes     | C.       | ycles/by | te f |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|--------------|----------|----------|----------|--------------|----------|----------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | quartile | median   | quartile | hash         | quartile | median   | quartile | hash         | quartile | median   | qua  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.91     | 4.94     | 5.00     | bmw512       | 5.37     | 5.38     | 5.40     | bmw512       | 6.11     | 6.12     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.32     | 7.44     | 7.58     | bmw256       | 7.72     | 7.76     | 7.82     | bmv256       | 8.26     | 8.27     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.70     | 9.99     | 10.41    | shaba1512    | 10.23    | 10.27    | 10.30    | blake32      | 10.66    | 10.67    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.93     | 10.06    | 10.11    | blake32      | 10.62    | 10.68    | 10.86    | shaba1512    | 11.75    | 11.81    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.08    | 12.16    | 12.25    | simd256      | 12.49    | 12.51    | 12.54    | simd256      | 12.92    | 12.94    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.49    | 12.65    | 12.88    | blake64      | 13.14    | 13.15    | 13.27    | blake64      | 13.99    | 14.02    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.00    | 13.02    | 13.03    | cubehash1632 | 14.18    | 14.19    | 14.19    | cubehash1632 | 15.01    | 15.04    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.46    | 13.59    | 13.68    | simd512      | 14.19    | 14.22    | 14.25    | simd512      | 15.23    | 15.28    | 1    |
| LEXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.08    | 14.15    | 14.24    | luffa256     | 14.46    | 14.48    | 14.51    | luffa256     | 16.11    | 16.12    | 1    |
| echo512 shavite3512 echo512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.91    | 15.93    | 15.94    | luffa384     | 16.42    | 16.42    | 16.43    | luffa384     | 17.25    | 17.26    | 1    |
| shevite3512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.10    | 17.12    | 17.14    | skein512     | 17.49    | 17.49    | 17.51    | skein512     | 18.12    | 18.13    | 1    |
| echo512 echog86a88512024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.00    | 18.00    | 18.01    | skein256     | 18.26    | 18.27    | 18.27    | skein256     | 18.70    | 18.70    | 1    |
| shavite3512 genesit51924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.21    | 19.29    | 19.33    | keccakc448   | 19.66    | 19.69    | 20.04    | jh224        | 20.25    | 20.29    | 2    |
| eche512 eche552 eche55          | 18.93    | 19.32    | 20.04    | jh224        | 19.68    | 19.70    | 19.82    | jh512        | 20.26    | 20.29    | 2    |
| cubehash161 echo512 echo512 echo512 echo512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.18    | 19.34    | 19.62    | jh512        | 19.73    | 19.78    | 19.82    | jh256        | 20.33    | 20.37    | 2    |
| shaves122 groets122 shaves123<br>woods122 groets122 shaves123<br>woods122 shaves123 shaves123<br>woods1223 shaves123 shaves12 | 19.30    | 19.41    | 19.56    | jh256        | 19.70    | 19.87    | 20.05    | jh384        | 20.31    | 20.45    | 2    |
| Accode: 1024 Accod          | 18.98    | 19.49    | 20.06    | jh384        | 20.10    | 20.11    | 20.12    | keccakc448   | 20.59    | 20.61    | 2    |
| keccalc 1024 harras keccalc Man Article Keccal          | 19.59    | 19.70    | 19.76    | fugue256     | 20.95    | 20.96    | 20.96    | sha512       | 22.22    | 22.52    | 2    |
| echo512 Provide 32 and a second          | 19.97    | 19.99    | 20.01    | sha512       | 20.96    | 20.96    | 20.96    | sha384       | 22.50    | 22.54    | 2    |
| UND Dead web 9 999 Lines and a state of the           | 19.99    | 20.00    | 20.03    | sha384       | 21.40    | 21.44    | 21.51    | keccakc512   | 22.54    | 22.54    | 2    |
| ocho512 detessatell (Jakington ocho510) and a state of the state of th          | 20.34    | 20.44    | 20.91    | keccakc512   | 21.45    | 21.48    | 21.50    | fugue256     | 24.16    | 24.18    | 2    |
| shureast grout 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.93    | 21.95    | 21.99    | keccak       | 22.78    | 22 78    | 22.80    | keccak       | 24.29    | 24 35    | 2    |

#### eBASH example

#### Implementation notes: x86, latour, crypto\_hash

Computer latour Architecture: x86 CPU ID: GemineIntel-000006b-bfebfbff CPU cycles/second: 2394000000..2394000000 (x86cpuinfo) SUPERCOP version: 20101002 Benchmark, date: 2010003...20101003

#### crypto\_hash

| Time  | Relative<br>time | Primitive     | Implementation                                                                               | Compiler                                                                   |
|-------|------------------|---------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 16380 | 1.00             | blake32       | crypto_hash/blake32/sse2                                                                     | gcc -funroll-loops -m32 -march=pentium-m -O2 -fom<br>frame-pointer (4.3.3) |
| 17964 | 1.10             | blake32       | crypto_hash/blake32/ssse3                                                                    | gcc -m32 -march=native -mtune=native -O2 -fomit-f                          |
| 21006 | 1.28             | blake32       | crypto_hash/blake32/sphlib                                                                   | gcc -m32 -march=pentiumpro -O2 -fomit-frame-point                          |
| 30195 | 1.84             | blake32       | crypto_hash/blake32/ref                                                                      | gcc -m32 -march=barcelona -O2 -fomit-frame-pointe                          |
| 31338 | 1.91             | blake32       | crypto_hash/blake32/sphlib-small                                                             | gcc -funroll-loops -m32 -march=athlon -O3 -fomit-<br>pointer               |
| 21555 | 1.00             | blake64       | crypto_hash/blake64/sse2                                                                     | gcc -funroll-loops -m32 -march=barcelona -O3 -fom<br>frame-pointer (4.3.3) |
| 25776 | 1.20             | blake64       | crypto_hash/blake64/ssse3                                                                    | gcc -m32 -march=core2 -msse4 -0 -fomit-frame-poin                          |
| 74394 | 3.45             | blake64       | crypto_hash/blake64/sphlib                                                                   | gcc -m32 -march=pentiumpro -O -fomit-frame-pointe                          |
| 74907 | 3.48             | blake64       | crypto_hash/blake64/sphlib-small                                                             | gcc -m32 -march=native -mtune=native -O -fomit-fr<br>pointer               |
| 80127 | 3.72             | blake64       | crypto_hash/blake64/ref                                                                      | gcc -m32 -march=pentiumpro -O -fomit-frame-pointe                          |
| 12636 | 1.00             | <u>bmv256</u> | crypto_hash/bmw256/opt24ssse3_asm32<br>(Optimized_ICC_11.1_raw_asm_32bitBMW256,_optc24ssse3) | gcc -m32 -march=core2 -Os -fomit-frame-pointer (4                          |
| 12915 | 1 02             | bmw256        | crvpto hash/bmw256/opt31ssse3 asm32                                                          | acc -m32 -march=core2 -msse4 -Os -fomit-frame-boi                          |

How to make fair performance comparisons?

How important is each platform?

When is hash performance critical?

What's the impact of unexploited "vulnerabilities"?

Announcement of 4-6 finalists due in December 2010

#### BLAKE

Co-designed with Luca Henzen (ETHZ), Willi Meier (FHNW), Raphael C.-W. Phan (Uni Loughborough, UK)

Our design goals:

- Be faster and more secure than SHA-2
- Make the specs readable by non-experts
- Allow implementation space/time trade-offs
- Do not reinvent the wheel (build on previous designs)
  - Bernstein's ChaCha stream cipher
  - Biham and Dunkelman's HAIFA construction

#### How BLAKE works (compression function)

Initialize an internal state of 16 words

$$\begin{pmatrix} V_0 & V_1 & V_2 & V_3 \\ V_4 & V_5 & V_6 & V_7 \\ V_8 & V_9 & V_{10} & V_{11} \\ V_{12} & V_{13} & V_{14} & V_{15} \end{pmatrix}$$

Different inputs give different states

Round function: use of a bijective mapping  ${\bf G}$  to transform each column, then each diagonal

#### How BLAKE works (compression function)

Initialize an internal state of 16 words

$$\begin{pmatrix} V_0 & V_1 & V_2 & V_3 \\ V_4 & V_5 & V_6 & V_7 \\ V_8 & V_9 & V_{10} & V_{11} \\ V_{12} & V_{13} & V_{14} & V_{15} \end{pmatrix}$$

Different inputs give different states

Round function: use of a bijective mapping  ${\bf G}$  to transform each column, then each diagonal

### How BLAKE works (compression function)

Initialize an internal state of 16 words

$$\begin{pmatrix} V_0 & V_1 & V_2 & V_3 \\ V_4 & V_5 & V_6 & V_7 \\ V_8 & V_9 & V_{10} & V_{11} \\ V_{12} & V_{13} & V_{14} & V_{15} \end{pmatrix}$$

Different inputs give different states

Round function: use of a bijective mapping  ${\bf G}$  to transform each column, then each diagonal

#### How BLAKE works (G function)

For **BLAKE-32** — version with 32-bit words, 32-byte digests

| а | += | $\mathtt{m}_i \oplus$   | $const_i$          |   |   |    |          |    |       |    |
|---|----|-------------------------|--------------------|---|---|----|----------|----|-------|----|
| а | += | b                       |                    | d | = | (a | $\oplus$ | d) | $\gg$ | 16 |
| С | += | d                       |                    | b | = | (b | $\oplus$ | c) | $\gg$ | 12 |
| a | += | $\mathtt{m}_{j} \oplus$ | $\texttt{const}_j$ |   |   |    |          |    |       |    |
| a | += | b                       |                    | d | = | (a | $\oplus$ | d) | $\gg$ | 8  |
| с | += | d                       |                    | b | = | (b | $\oplus$ | c) | $\gg$ | 7  |

#### How BLAKE works (G function)

For **BLAKE-64** — version with 64-bit words, 64-byte digests

| а        | +=  | $\mathtt{m}_i \oplus$ | $const_i$          |     |    |          |    |       |    |
|----------|-----|-----------------------|--------------------|-----|----|----------|----|-------|----|
| а        | +=  | b                     |                    | d = | (a | $\oplus$ | d) | $\gg$ | 32 |
| С        | +=  | d                     |                    | b = | (b | $\oplus$ | c) | $\gg$ | 25 |
| а        | +-  | <b>m</b> . (1)        | const              |     |    |          |    |       |    |
| <u>u</u> | . – | mj ⊕                  | $\texttt{const}_j$ |     |    |          |    |       |    |
|          | +=  | ,                     | constj             | d = | (a | $\oplus$ | d) | >>>>  | 16 |

#### **BLAKE** in software

Straightforward to implement (chain of  $+, \oplus, \gg$ )

Speed-up with SIMD instructions (SSE2)

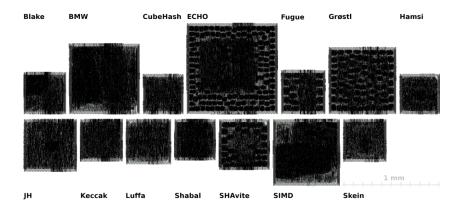
On Intel Core 2 Duo (eBASH's katana)

- BLAKE-32: 10.21 cycles/byte with gcc -march=nocona -0 -fomit-frame-pointer
- BLAKE-64: 7.04 cycles/byte with gcc -m64 -march=K8 -02 -fomit-frame-pointer
- ► vs. 15.32 (SHA-256), 11.63 (SHA-512)

268 bytes of RAM in ATmega1281 (8-bit, 8 Kb RAM)

## **BLAKE** in hardware

Space/time trade-offs with 1, 2, 4, or 8 functions G


Own VHDL implementations, synthesis, chips fabrication

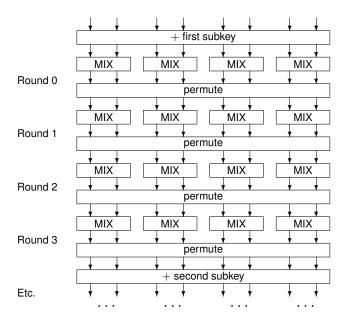
- ► BLAKE-32 in 13.5 kGE, 135 Mbps (180 nm)
- ▶ BLAKE-32 in 38 kGE, 15 Gbps (90 nm)
- ► BLAKE-64 in 79 kGE, 19 Gbps (90 nm)

Many third-party implementations, e.g. in FPGA

- BLAKE-32 with 56 Virtex 5 slices, 225 Mbs
- ► BLAKE-64 with 108 Virtex 5 slices, 314 Mbps [Beuchat et al.]

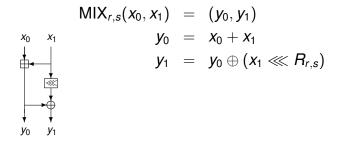
## SHA-3 candidates in hardware




See SHA-3 hardware evaluation project by Henzen et al. http://www.iis.ee.ethz.ch/~sha3/

## Skein




Design by Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, Jesse Walker

- One of the 14 round-2 candidates
- ARX (Add, Rotate, Xor) algorithm
- Only works with 64-bit words
- Based on the "Threefish" block cipher ("Twofish" was the team's AES candidate)



## Threefish's MIX function

At round  $r \in \{0, 1, ..., 71\}$  and position  $s \in \{0, 1, 2, 3\}$ :



## Skein's round-2 tweak

Skein was "tweaked" for round 2

- ► New rotation constants in MIX optimizing diffusion
- ► 2-day computation with a genetic algorithm

Expected to improve resistance to differential attacks as

 Improved cryptanalysis of Skein Asiacrypt '09, w/ Calik, Meier, Özen, Phan, Varıcı

*"It is not clear to us whether the impossible differential can be modified for the new rotation constants."* 

How is our analysis affected?

## Impossible differentials

#### The miss-in-the-middle technique:

Proof by contradiction that  $(\alpha \rightarrow \gamma)$  cannot occur

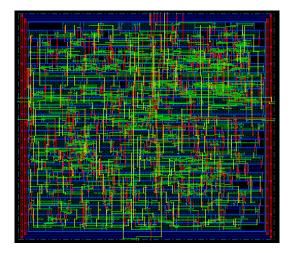
$$\alpha \xrightarrow{\text{prob.1}} \beta \neq \delta \xleftarrow{\text{prob.1}} \gamma$$

In practice,  $\beta$  and  $\delta$  are differences over a subset of the internal state (that is, truncated differentials)

Impossible differentials were previously found for

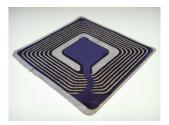
- ▶ 8 rounds of AES-192 (of 12)
- ► 5 rounds of Twofish (of 16)
- ► 21 rounds of Threefish (of 72, round-1 version)

## New results on the round-2 Threefish


- Probability-1 truncated differential for 14 rounds (against 13 for the round-1 version!)
- Impossible differential for 21 rounds (same as for the round-1!)
- More efficient linearization than for round-1 version

 $\Rightarrow$  Unclear whether the "improved" constants are better than the original ones. . .

Improved protecting against attack **A** may weaken resistance to attack **B**...


Work in progress with Raphael Phan...

#### And now for something completely different...



## Towards lightweight hashing

Hashing in dedicated IC's (as RFID tags' chips)



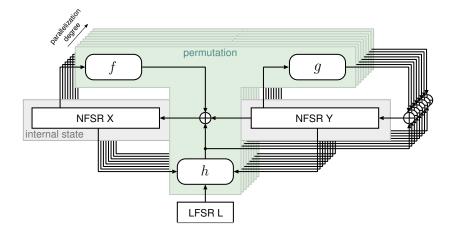
- Identification protocols
- Message authentication

MD5 and SHA-1 generally too big (5000+GE)

Smallest known proposal: PRESENT-based hashes by Bogdanov et al. (CHES 2008)

- ▶ 64-bit hash: 1600 GE
- 128-bit hash: 2330 GE

## Our new hashes: the QUARK family


 Quark: a lightweight hash CHES '10, w/ Henzen, Meier, Naya-Plasencia

Design philosophy:

- Consider security as a parameter independent of the digest length
- Do not make "light versions" of known constructions, but use a design intrinsically "lightweight"

Lineage:

- Sponge functions
- Lightweight stream cipher Grain
- Lightweight block cipher KATAN



## Hardware performance of QUARK

|            | Security |     |     | Area | Thr.   | Power [µW] |      |
|------------|----------|-----|-----|------|--------|------------|------|
|            | Pre      | 2nd | Col | [GE] | [kbps] | Mean       | Peak |
| U-QUARK    | 128      | 64  | 64  | 1379 | 1.47   | 2.44       | 2.96 |
| d-Quark    | 160      | 80  | 80  | 1702 | 2.27   | 3.10       | 3.95 |
| s-Quark    | 224      | 112 | 112 | 2296 | 3.13   | 4.35       | 5.53 |
| u-Quark×8  | 128      | 64  | 64  | 2392 | 11.76  | 4.07       | 4.84 |
| d-Quark×8  | 160      | 80  | 80  | 2819 | 18.18  | 4.76       | 5.80 |
| s-Quark×16 | 224      | 112 | 112 | 4640 | 50.00  | 8.39       | 9.79 |

vs. 5000+GE for SHA-1

Smaller than previous lightweight hashes

Straightforward speed/confidence trade-offs by varying #rounds

## Summary

SHA-3 will augment the SHA-2 hash standard in 2012

- Hopefully faster and more confidence-inspiring
- ▶ 14 candidates left, 4-6 finalists in Dec 2010

SHA-2 still okay for most applications

- Theoretical attack on 43 rounds (of 64)
- Insecure in prefix-MAC

Future challenges:

- Ultra lightweight hashes
- Efficient "provably secure" hashes

## Further reading

- NIST's Hash Competition http://nist.gov/hash-competition
- eBACS (benchmarks of crypto implementations) http://bench.cr.yp.to/
- The ECRYPT SHA-3 Zoo (submission packages, latest attacks/implementations) http://ehash.iaik.tugraz.at/wiki/The\_SHA-3\_Zoo
- BLAKE's webpage http://131002.net/blake/
- QUARK's webpage http://131002.net/quark/

PDF of these slides available at http://131002.net/talks.html

# State of the hash: SHA-3 and beyond

Jean-Philippe Aumasson

