
BLAKE and 256-bit advanced vector extensions

Samuel Neves1 and Jean-Philippe Aumasson2

1 University of Coimbra, Portugal
2 NAGRA, Switzerland

Abstract. Intel recently documented its AVX2 instruction set extension that introduces
support for 256-bit wide single-instruction multiple-data (SIMD) integer arithmetic over
double (32-bit) and quad (64-bit) words. This will enable Intel’s future processors—starting
with the Haswell architecture, to be released in 2013—to fully support 4-way SIMD com-
putation of 64-bit ARX algorithms (32-bit is already supported since SSE2). AVX2 also
introduces instructions with potential to speed-up cryptographic functions, like any-to-any
permute and vectorized table lookup. In this paper we show how the AVX2 instructions will
benefit the SHA-3 finalist hash function BLAKE, an algorithm that naturally lends itself
to 4-way 32- or 64-bit SIMD implementations thanks to its inherent parallelism. We also
wrote BLAKE-256 assembly code for AVX and AVX2, and measured for the former a speed
of 7.62 cycles per byte, setting a new speed record.

Keywords: hash functions, SHA-3, implementation, SIMD

1 Introduction

NIST will announce the winner of the SHA-3 competition3 in the second quarter of 2012. At the
time of writing (February 26, 2012), no significant security weakness has been discovered on any of
the five finalists—BLAKE, Grøstl, JH, Keccak, and Skein—and all seem to provide a comfortable
margin of security against future attacks. It is thus expected that secondary evaluation criteria
such as performance and ease of implementation will be decisive in the choice of SHA-3.

An important secondary criterion is the hashing speed on high-end CPUs, such as the popular
Core-branded Intel processors. These processors are found in laptops, desktops, and servers, and
it is likely that users hashing large amounts of data (be it many small messages or a few big ones)
will only switch from SHA-2 to SHA-3 if the latter is noticeably faster. An example of application
where fast hashing is needed is the authentication of data in secure cloud storage services. The
relative hashing speeds of the SHA-3 finalists are found on the dedicated page of the eBACS [1]
project4: http://bench.cr.yp.to/results-sha3.html.

This paper focuses on the SHA-3 finalist BLAKE, and investigates implementations exploit-
ing Intel’s upcoming AVX2 instruction set [2]. Indeed, previous implementations of BLAKE have
exploited the SSE2, SSSE3, and SSE4.1 instruction sets, which provide single-input multiple-data
(SIMD) instructions over 128-bit XMM registers. Thanks to BLAKE’s inherent internal paral-
lelism, such instructions generally lead to a significant speed-up. AVX2 extends SIMD capabili-
ties to 256-bit registers, and thus provides a new avenue for speed-optimized implementations of
BLAKE.

We wrote complete C and assembly implementations of BLAKE-512 for AVX2. As AVX2
is not rolled out in today’s CPU’s, a best effort was to make heuristical estimates based on
the information available. We also wrote assembly implementations of BLAKE-256 for AVX and
AVX2, and measured the former on a Sandy Bridge CPU at 7.62 cycles per byte, improving on the
7.87 figure from eBASH (sandy0, supercop-20110708). We used Intel’s Software Development

3http://www.nist.gov/hash-competition.
4The eBACS project relies on the SUPERCOP benchmark toolkit, to performs automated benchmarks

of a number of primitives on various software platforms, testing each implementation submitted with a
number of compilation options, and reporting the fastest combination.

http://bench.cr.yp.to/results-sha3.html
http://www.nist.gov/hash-competition

Emulator5 to test the correctness of the AVX2 implementations, and the latest trunk build of the
Yasm assembler6 (as the latest release does not support AVX2) to compile them.

2 The keyed permutation of BLAKE

The SHA-3 finalist BLAKE is composed of two main hash functions, BLAKE-256 and BLAKE-
512. Below we only describe the keyed permutation algorithms at the core of their respective
compression functions, for it is the only performance-critical part in a software implementation.
We refer to [3] for a complete specification of BLAKE.

The keyed permutations of both BLAKE-256 and BLAKE-512 transform 16 words v0, v1, . . . , v15
and use

• 16 message words m0,m1, . . . ,m15 as the key of the permutation,
• 16 word constants u0, u1 . . . , u15,
• ten permutations of the set {0, . . . , 15} denoted σ0, σ1, . . . , σ15.

BLAKE-256 operates on 32-bit words and BLAKE-512 operates on 64-bit words. The u constants
are thus different for the two functions.

A round of the keyed permutation makes two layers of computations using the G function,
respectively on the columns and on the diagonals of the 4×4 array representation of v0, v1, . . . , v15,
as described below:

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

The bijective transform Gi(a, b, c, d) does the following operations:

a← a+ b+ (mσr[2i] ⊕ uσr[2i+1])

d← (d⊕ a) ≫ α

c← c+ d

b← (b⊕ c) ≫ β

a← a+ b+ (mσr[2i+1] ⊕ uσr[2i])

d← (d⊕ a) ≫ γ

c← c+ d

b← (b⊕ c) ≫ δ

where the round index r ≥ 0 is reduced modulo 10. BLAKE-256 operates on 32-bit words, performs
14 rounds, and uses rotation constants α = 16, β = 12, γ = 8, and δ = 7. BLAKE-512 operates
on 64-bit words, performs 16 rounds, and uses rotation constants α = 32, β = 25, γ = 16, and
δ = 11.

The four G functions of the first layer (called “column step” in [3]) can be computed in parallel,
as well as the four of the second layer (called “diagonal step”). One can thus view a round as

1. a column step;
2. a left-rotation of the i-th column by i positions, i = 0, 1, 2, 3, i.e.,

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

 is transformed to


v0 v1 v2 v3
v5 v6 v7 v4
v10 v11 v8 v9
v15 v12 v13 v14

 ;

5http://software.intel.com/en-us/articles/intel-software-development-emulator/
6http://yasm.tortall.net/

http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://yasm.tortall.net/

3. a column step;
4. a right-rotation of the i-th column by i positions, i = 0, 1, 2, 3, to reset words to their initial

position.

These two observations make a 4-way word-vectorized implementation of a round straightforward,
as shown in the next section.

3 Previous SIMD implementations of BLAKE

A number of previous implementations of BLAKE (as included SUPERCOP [1]) have used Intel’s
Streaming SIMD Extensions (SSE) instruction sets to exploit the parallelism of BLAKE for im-
proved performance. This section gives a brief overview of those implementations, starting with a
presentation of the SSE2 instruction set.

3.1 Streaming SIMD Extensions 2 (SSE2)

Intel’s first set of instructions supporting all 4-way 32-bit SIMD operations necessary to implement
BLAKE-256 is the Streaming SIMD Extensions 2 (SSE2) set. SSE2 includes vector instructions on
4×32-bit words for integer addition, XOR, word-wise left and right shift, as well as word shuffle.
This is all one needs to implement BLAKE-256’s round function, as rotations can be simulated by
two shifts and an XOR. BLAKE-512 can also use SSE2 (though with less benefit than BLAKE-
256), thanks to the support of 2-way 64-bit SIMD operations.

SSE2 instructions operate on 128-bit XMM registers, rather than 32 or 64-bit general-purpose
registers. In 64-bit mode (i.e. in x86-64 a/k/a amd64 architecture) 16 XMM registers are available,
whereas only eight are available in 32-bit mode. The SSE2 instructions are supported by all
recent Intel and AMD desktop and laptop processors (Intel’s Xeon, Celeron, Core X’s, etc.; AMD’s
Athlon 64, Opteron, etc.) as well as by common low-voltage processors, as found in netbooks (Intel’s
Atom; VIA’s C7 and Nano).

In addition to inline assembly, C(++) programmers can use SSE2 instructions via intrinsic
functions (or intrinsics), which are API extensions built into the compiler. Intrinsics allow to en-
force the use of SSE2 instructions by the processor, enable the use of C syntax and variables instead
of assembly language and hardware registers, and let the compiler optimize instruction scheduling
for better performance. Table 1 shows intrinsics corresponding to some assembly mnemonics used
to implement BLAKE-256. A complete reference to SSE2 intrinsics can be found in [4].

Table 1. Intrinsics of main SSE2 instructions used to implement BLAKE-256.

Assembly Intrinsic Description

paddd mm add epi32 4-way 32-bit integer addition
pshufd mm shuffle epi32 4-way 32-bit word shuffle
pslld mm srli epi32 4-way 32-bit left-shift
psrld mm srli epi32 4-way 32-bit right-shift
pxor mm xor si128 Bitwise XOR of two 128-bit registers

3.2 SIMD implementation of BLAKE-256 using SSE2

To help understand the principle of SIMD implementations of BLAKE, we first present a simple
SSE2 implementation of BLAKE-256’s column step, similar to the sse2 implementation in SU-
PERCOP. The v internal state is stored in four XMM registers defined as m128i type and aliased
row1, row2, row3, and row4. These respectively correspond to the first four rows of the 4×4 array
representation described in §2.

First, one initializes a 128-bit XMM register aliased buf1 with the four message words mσr[2i].
Another XMM register aliased buf2 is initialized with the four constants uσr[2i+1]. buf1 and buf2

are XORed together into buf1 and the result is added to row1:

buf1 = _mm_set_epi32(m[sig[r][6]], m[sig[r][4]],

m[sig[r][2]] , m[sig[r][0]]);

buf2 = _mm_set_epi32(u[sig[r][7]], u[sig[r][5]],

u[sig[r][3]] , u[sig[r][1]]);

buf1 = _mm_xor_si128(buf1 , buf2);

row1 = _mm_add_epi32(row1 , buf1);

At this state, one can already prepare the XMM register containing the XOR of the permuted
message and constants for the next message input:

buf1 = _mm_set_epi32(m[sig[r][7]], m[sig[r][5]],

m[sig[r][3]] , m[sig[r][1]]);

buf2 = _mm_set_epi32(u[sig[r][6]], u[sig[r][4]],

u[sig[r][2]] , u[sig[r][0]]);

buf1 = _mm_xor_si128(buf1 , buf2);

The subsequent operations are only vectorized XOR, integer addition, and word-wise shifts:

row1 = _mm_add_epi32(row1 , row2);

row4 = _mm_xor_si128(row4 , row1);

row4 = _mm_xor_si128(_mm_srli_epi32(row4 , 16),

_mm_slli_epi32(row4 , 16));

row3 = _mm_add_epi32(row3 , row4);

row2 = _mm_xor_si128(row2 , row3);

row2 = _mm_xor_si128(_mm_srli_epi32(row2 , 12),

_mm_slli_epi32(row2 , 20));

row1 = _mm_add_epi32(row1 , buf1);

row1 = _mm_add_epi32(row1 , row2);

row4 = _mm_xor_si128(row4 , row1);

row4 = _mm_xor_si128(_mm_srli_epi32(row4 , 8),

_mm_slli_epi32(row4 , 24));

row3 = _mm_add_epi32(row3 , row4);

row2 = _mm_xor_si128(row2 , row3);

row2 = _mm_xor_si128(_mm_srli_epi32(row2 , 7),

_mm_slli_epi32(row2 , 25));

At the end of a column step, each register is word-rotated to perform the diagonal step as a column
step on the rotated state, as observed in §2:

row2 = _mm_shuffle_epi32(row2 , _MM_SHUFFLE (0,3,2,1));

row3 = _mm_shuffle_epi32(row3 , _MM_SHUFFLE (1,0,3,2));

row4 = _mm_shuffle_epi32(row4 , _MM_SHUFFLE (2,1,0,3));

The mm shuffle epi32 intrinsic takes as second argument an immediate value (i.e. a constant
integer literal) expressed as a predefined macro. We refer to [4, p.65] for details of the MM SHUFFLE

macro.

3.3 Implementations using SSSE3 and SSE4.1

The SSE2 instruction set was followed by the SSE3, SSSE3, SSE4.1 and SSE4.2 extensions [4],
which brought additional instructions to operate on XMM registers. It was found that some of
those instructions could be of benefit to BLAKE, and implementations exploiting SSSE3 and
SSE4.1 instructions have been submitted to SUPERCOP:

• The ssse3 implementation of BLAKE-256 uses the pshufb instruction (intrinsic mm shuffle epi8)
to perform rotations of 16 and 8 bits, as well as the initial conversion of the message from
little-endian to big-endian byte order, since both can be expressed as byte shuffles (in the

sse2 implementations rotations were implemented as two shifts and an XOR). This brings
a significant speed-up on Core 2 based on the Penryn microarchitecture, which introduced a
dedicated shuffle unit to complete pshufb within one micro-operation, against four on the first
Core 2 chips [5].
• The sse41 implementation of BLAKE-256 uses the pblendw instruction (mm blend epi16)

in combination with SSE2’s pshufd, pslldq, and others to load m and u words according to
the σ permutations without using table lookups.

In general, the ssse3 implementation is faster than sse2, and sse41 is faster than both7. For
example, the 20110708 measurements of SUPERCOP on sandy0 (a machine equipped with a
Sandy Bridge Core i7, without AVX activated) report sse41 as the fastest implementation of
BLAKE-256, with the ssse3 and sse2 implementations being respectively 4 % and 24 % slower.

Recently, SUPERCOP included the vect128 and vect128-mmxhack implementations of BLAKE-
256 by Leurent, which slightly outperform the sse41 implementation. The main singularity of
Leurent’s code is its implementation of the σ permutations: vect128 “byte-slices” each message
word accross four XMM registers and uses the pshufb instruction to reorder them according to
σ; vect128-mmxhack instead uses MMX and general-purpose registers to store and unpack the
message words in the correct order into XMM registers.

4 AVX2 advanced vector extensions

AVX2 is an extension of Intel’s Advanced Vector Extensions (AVX) set of instructions, somewhat in
the same spirit of SSE2’s extension of SSE: AVX and SSE do not provide integer vector operations,
while AVX2 and SSE2 do. This section gives a brief overview of AVX and AVX2, and describes in
more detail the instructions that will be used to implement BLAKE. We refer to Intel’s reference
documents for a complete documentation of AVX [6] and AVX2 [2].

4.1 Overview of AVX and AVX2

Advanced Vector Extensions (AVX) were announced by Intel in 2008 to introduce 256-bit wide
vector instructions, whereas previous SSE extensions work on 128-bit XMM registers. In addi-
tion to SIMD operations extending SSE’s capabilities from 128- to 256-bit width, AVX brings to
implementers:

• Non-destructive operations with 3- and 4-operand syntax (including for legacy 128-bit SIMD
extensions);

• Relaxed memory alignment constraints, compared to SSE.

AVX operates on 256-bit SIMD registers called YMM, divided in two 128-bit lanes. The low
lanes, i.e., the lower 128 bits, are aliased to the respective 128-bit XMM registers. Most instructions
work “in-lane”: each source element is applied only to other elements of the same lane. Some more
expensive “cross-lane” instructions do exist, most notably shuffles.

AVX2 is an extension of AVX announced in 2011 that promotes most of the 128-bit SIMD
integer instructions to 256-bit capabilities. AVX2 supports 4-way 64-bit integer addition, XOR, and
vector shifts, thus enabling SIMD implementations of BLAKE-512. AVX2 also includes instructions
to perform any-to-any permutation of words over a 256-bit register and vectorized table lookup
to load elements in memory to YMM registers (see the instructions vperm* and vpgatherd* in
§§4.2).

AVX is supported by Intel processors based on the Sandy Bridge microarchitecture (and future
ones). The first processors commercialized were Core i7 and Core i5 in January 2011, but AVX will
be (or is already) supported in new generations of Pentium and Celeron. AVX2 will be introduced
in Intel’s Haswell 22 nm architecture, to be released in 2013.

7See the benchmarks results on http://bench.cr.yp.to/results-sha3.html.

http://bench.cr.yp.to/results-sha3.html

4.2 Useful AVX2 instructions

We focus on a small subset of the AVX2 instructions, presenting for each assembly instruction
a brief explanation of what it does. For a better understanding, we also provide an equivalent
description in C syntax using only general-purpose registers. Table 2 gives the respective C intrinsic
functions.

Table 2. Intrinsics of main AVX2 instructions useful to implement BLAKE.

Assembly Intrinsic Description

vpaddd mm256 add epi32 8-way 32-bit integer addition
vpaddq mm256 add epi64 4-way 64-bit integer addition
vpxor mm256 xor si256 XOR of the two 256-bit values
vpsllvd mm256 sllv epi32 8-way 32-bit left-shift
vpsllvq mm256 sllv epi64 4-way 64-bit left-shift
vpsrlvd mm256 srlv epi32 8-way 32-bit right-shift
vpsrlvq mm256 srlv epi64 4-way 64-bit right-shift
vpermd mm256 permute8x32 epi32 Shuffle of the eight 32-bit words
vpermq mm256 permute4x64 epi64 Shuffle of the four 64-bit words
vpgatherdd mm256 i32gather epi32 8-way 32-bit table lookup
vpgatherdq mm256 i32gather epi64 4-way 64-bit table lookup

vpaddd performs 8-way 32-bit integer addition, equivalently to

uint32_t a[8],b[8],c[8];

for(i=0; i < 8; ++i) c[i] = a[i] + b[i];

vpaddq performs 4-way 64-bit integer addition, equivalently to

uint64_t a[4],b[4],c[4];

for(i=0; i < 4; ++i) c[i] = a[i] + b[i];

vpxor performs a bitwise XOR over all words, representable in C as

uint32_t a[8],b[8],c[8];

for(i=0; i < 8; ++i) c[i] = a[i] ^ b[i];

vpsllvd performs 8-way 32-bit variable left-shift (that is, each of the eight 32-bit words can be
rotated by a distinct value), equivalently to

uint32_t a[8],b[8],c[8];

for(i=0; i < 8; ++i) b[i] = a[i] << c[i];

Similarly, vpsrlvd performs 8-way 32-bit variable right-shift, and vpsllvq and vpsrlvq perform
4-way 64-bit variable left- and right-shift.

vpermd shuffles 32-bit words of a full YMM register across lanes using two YMM registers as
inputs: one as source, the other as the permutation’s indices:

uint32_t a[8],b[8],c[8];

for(i=0; i < 8; ++i) c[i] = a[b[i]];

vpermq is similar to vpermd but shuffles 64-bit words and takes an immediate operand instead as
the permutation:

uint64_t a[4],c[4]; int b;

for(i=0; i < 4; ++i) c[i] = a[(b>>(2*i))%4];

vpgatherdd is among the most remarkable of the AVX2 extensions: it performs eight table lookups
in parallel, as in the code below:

uint8_t *b; uint32_t scale , idx[8], c[8];

for(i=0; i < 8; ++i) c[i] = *(uint32_t)(b + idx[i]* scale);

vpgatherdq is quite similar to vpgatherdd, but works on four 64-bit words:

uint8_t *b; uint32_t scale , idx [4]; uint64_t c[4];

for(i=0; i < 4; ++i) c[i] = *(uint32_t)(b + idx[i]* scale);

4.3 Performance estimation

As previously mentioned, processors carrying the AVX2 instruction set are only expected to be
available in 2013. There is currently no hard data on the performance of the instructions described
above; one can, however, make some educated guesses, by using the Sandy Bridge as starting point.

The vpaddd, vpaddq, vpsllvd, vpsllvq, vpsrlvd, vpsrlvq, and vpxor instructions’ perfor-
mance can be expected to be on-par with Sandy Bridge’s vxorps instruction, which requires a
single cycle to complete. The vpermd and vpermq instructions cross register lanes; on Sandy Bridge,
this adds one extra cycle of latency. We can estimate that this penalty gets no worse on Haswell,
and that vpermd and vpermq require two cycles to complete. The gather instructions remain the
most elusive; it is unknown whether this instruction consists of a large number of micro-ops, or
uses dedicated circuitry. Assuming only one cache-line is accessed, one can expect at least three
cycles of latency for the memory load, plus two for the extra logic.

We speculate that instruction parallelism in AVX2-compatible processors will resemble existing
SSE2 parallelism available in current processors. Current Sandy Bridge processors are capable of
executing three AVX instructions per cycle, namely one floating-point multiply, one floating-point
add, and one logical operation. We expect future processors to be able to sustain such throughput
with integer instructions, as it happens today with XMM registers.

5 Implementing BLAKE-512 with AVX2

We present a simple SIMD implementation of BLAKE-512, using AVX2’s 4-way 64-bit SIMD
instructions exactly in the same way that BLAKE-256 uses SSE2’s 4-way 32-bit instructions.
We then present some potential speed optimizations exploiting instructions proper to AVX2.
The resulting performance can only be roughly estimated, for AVX2 is not yet fully documented
(see §§4.3).

5.1 Straightforward SIMD implementation

AVX2 provides instructions to write a straightforward SIMD implementation of BLAKE-512 sim-
ilar to the sse2 implementation of BLAKE-256 in §3, except that 256-bit YMM registers are used
to hold four 64-bit words instead of 128-bit XMM registers being used to hold four 32-bit words.

The code below implements the column step of BLAKE-512’s round function, i.e. it computes
the first four instance of G in parallel. The 4×4 state of 64-bit words is stored in four YMM
registers defined as m256i type and aliased row1, row2, row3, and row4.

buf1 = _mm256_set_epi64x(m[sig[r][6]], m[sig[r][4]],

m[sig[r][2]] , m[sig[r][0]]);

buf2 = _mm256_set_epi64x(u[sig[r][7]], u[sig[r][5]],

u[sig[r][3]] , u[sig[r][1]]);

buf1 = _mm256_xor_si256(buf1 , buf2);

row1 = _mm256_add_epi64(_mm256_add_epi64(row1 , buf1), row2);

row4 = _mm256_xor_si256(row4 , row1);

row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 32),

_mm256_slli_epi64(row4 , 32));

row3 = _mm256_add_epi64(row3 , row4);

row2 = _mm256_xor_si256(row2 , row3);

buf1 = _mm256_set_epi64x(u[sig[r][6]], u[sig[r][4]],

u[sig[r][2]] , u[sig[r][0]]);

buf2 = _mm256_set_epi64x(m[sig[r][7]], m[sig[r][5]],

m[sig[r][3]] , m[sig[r][1]]);

buf1 = _mm256_xor_si256(buf1 , buf2);

row2 = _mm256_xor_si256(_mm256_srli_epi64(row2 , 25),

_mm256_slli_epi64(row2 , 39));

row1 = _mm256_add_epi64(_mm256_add_epi64(row1 , buf1), row2);

row4 = _mm256_xor_si256(row4 , row1);

row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 16),

_mm256_slli_epi64(row4 , 48));

row3 = _mm256_add_epi64(row3 , row4);

row2 = _mm256_xor_si256(row2 , row3);

row2 = _mm256_xor_si256(_mm256_srli_epi64(row2 , 11),

_mm256_slli_epi64(row2 , 53));

row2 = _mm256_permute4x64_epi64(row2 , _MM_SHUFFLE (0,3,2,1));

row3 = _mm256_permute4x64_epi64(row3 , _MM_SHUFFLE (1,0,3,2));

row4 = _mm256_permute4x64_epi64(row4 , _MM_SHUFFLE (2,1,0,3));

Excerpts of our assembly implementation can be found in Appendix C.1.

5.2 Rotations with shuffles

A simple optimization consists in implementing the rotation by 32 bits using the vpshufd instruc-
tion, which implements “in-lane” shuffle of 32-bit words. That is, the line

row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 32),

_mm256_slli_epi64(row4 , 32));

is replaced by

row4 = _mm256_shuffle_epi32(row4 , _MM_SHUFFLE (2,3,0,1));

Similarly, the rotations by 16 bits can be implemented using vpshufb in a similar fashion as §§3.3:

row4 = _mm256_shuffle_epi8(row4 , r16);

where r16 is the alias of a YMM register containing the index values for the byte of row4 at its
respective lane and position.

Based on the estimates in §§4.3, we expect to save two cycles per rotation of 16 or 32 bits, i.e.
four cycles per column step, eight cycles per round, or 128 cycles per compression function.

5.3 Message loads with vpgatherdq

As observed in §§4.2, the vpgatherdq instruction can be used to load words from arbitrary memory
addresses. To load message words according to the σr permutation, one would thus write the
following code:

_m256i m0 = _mm_i32gather_epi64(m, sigma[r][0], 8);

_m256i m1 = _mm_i32gather_epi64(m, sigma[r][1], 8);

_m256i m2 = _mm_i32gather_epi64(m, sigma[r][2], 8);

_m256i m3 = _mm_i32gather_epi64(m, sigma[r][3], 8);

where sigma[r][i]’s are m128i type, and where each 32-bit word holds an index of the permu-
tation. As each sigma[r][i] holds four indices, sigma[r][0] to sigma[r][3] hold the 16 indices
of the σr permutation.

Such a sequential implementation of four vpgatherdq’s is expected to only add an extra latency
equivalent to that of a single vpgatherdq, for the subsequent instructions (XOR, etc.) only depend
on the first call, and therefore will not stall while the three others are executed.

5.4 Message caching

As discussed in the previous section, loading the message words according to the σ permutation
takes a considerable number of cycles, compared to an arithmetic operation. A potential opti-
mization allows to reduce the cost of message loading, by observing that in BLAKE-512, six of
the ten σ permutations are used twice. That is, a same permuted message is used twice for the
permutations σ0, σ1, . . . , σ5. An implementation strategy could thus be:

1. In rounds 0, . . . , 5: compute the permuted messages, and store the result (preferably in unused
YMM registers);

2. In rounds 6, . . . , 9: compute the permuted messages without storing the result;
3. In rounds 10, . . . , 15: do not compute the permuted messages, but rather use the registers set

in step 1.

To save an additional XOR, one should store the permuted message already XORed with the
constants.

Unfortunately, the above strategy would require 24 YMM registers only to store the permuted
message—as a BLAKE-512 message block is 1024-bit, occupying four YMM registers—whereas
only 16 are available and at least six are necessary to implement the round function.

Nevertheless, 24 YMM registers represent 768 bytes of memory, which fits comfortably in most
processors’ L1 cache. The ≈ 3-cycle penalty for L1 accesses should be easily avoidable by loading
the messages early. In anything other than synthetic benchmarks, it is possible that the resulting
cache evictions can diminish the overall performance.

Note that message caching is not proper to AVX2, but can also be used by SSE implementations
of BLAKE-512.

5.5 Performance estimates

Based on estimations in §§4.3, one can attempt to predict the speed of an implementation of
BLAKE-512 using the aforementioned techniques. For simplicity, we assume that no message
caching is used. We first propose a pessimistic estimate—i.e. likely to overestimate the cycles/byte
count—based on the following assumptions:

• Message loading takes 5 cycles per step (latency of one vpgatherdq).
• Each addition or XOR consumes one cycle, and all are computed serially.
• XORs between message and constants are computed in parallel to other operations (message

loads or shuffles), and thus are not counted.
• Rotations by 32 or 16 bits take one cycle, while those by 25 or 11 bits take three cycles.
• Of the three shuffles performed for (un)diagonalization, two are computed in parallel to addi-

tions or XORs.
• Initialization and finalization of the compression function add an overhead of respectively 10

and 6 cycles.

This estimates each round to 2× (5 + 10 + 2 + 6 + 2) = 52 cycles, thus 52× 16 + 16 = 848 cycles
for the compression function, i.e. 6.63 cycles per byte of message.

The above assumes that from the second round, message loading waits for the end of the
previous round to start. We may thus (optimistically) assume that vpgatherdq will run in parallel
to the end of the previous round, possibly leading to a higher speed.

We stress that that only actual benchmarks on real hardware would provide reliable speed
figures. We only make the above estimates as an attempt to predict the real speed based on the
data available and on our experiments with AVX.

6 Implementing BLAKE-256

This section shows how BLAKE-256 can benefit of AVX2. Unlike BLAKE-512, BLAKE-256 is not
naturally adaptable to 256-bit vectors, as there is a maximum of four Gi independently-running
functions per round. Nevertheless, it is possible to take advantage of AVX2 to speedup BLAKE-
256. Excerpts of our assembly implementation appear in Appendix C.3.

6.1 Optimizing message loads with AVX2

The first way to improve message loads is by using the vpgatherdd instruction from the AVX2
instruction set. To perform the full 16-word message permutation required in each round, only
four operations are required:

_m128i m0 = _mm_i32gather_epi32(m, sigma[r][0], 4);

_m128i m1 = _mm_i32gather_epi32(m, sigma[r][1], 4);

_m128i m2 = _mm_i32gather_epi32(m, sigma[r][2], 4);

_m128i m3 = _mm_i32gather_epi32(m, sigma[r][3], 4);

This can be further improved by using only two YMM registers to store the permuted message:

_m256i m01 = _mm256_i32gather_epi32(m, sigma[r][0], 4);

_m256i m23 = _mm256_i32gather_epi32(m, sigma[r][1], 4);

The individual 128-bit blocks of message are then accessible through the vextracti128 instruction,
e.g.:

m1 = _mm256_extracti128_si256(m01 , 1);

One must also consider the possibility that vpgatherdd will not have acceptable performance,
perhaps due to specific processor design idiosyncrasies; AVX2 can still help us, via the vpermd

and vpblendd instructions:

tmp0 = _mm256_permutevar8x32_epi32(m01 , sigma00);

tmp1 = _mm256_permutevar8x32_epi32(m23 , sigma01);

tmp2 = _mm256_permutevar8x32_epi32(m01 , sigma10);

tmp3 = _mm256_permutevar8x32_epi32(m23 , sigma11);

m01 = _mm256_blend_epi32(tmp0 , tmp1 , mask0);

m23 = _mm256_blend_epi32(tmp2 , tmp3 , mask1);

In the above code, we permute the elements from the first YMM register into their proper order in
the permutation, after which we permute the elements from the second. A simple blend instruction
suffices to obtain the correct permutation. We repeat the process for the second part of the
permutation. Once again, individual 128-bit blocks are available via vextracti128.

For completeness, the instructions vextracti128 and vpblendd are documented in Appendix B.

6.2 Optimizing message loads with XOP

The XOP instruction set is AMD’s extension to AVX (see Appendix A). An approach similar to
that in §§6.1 can be used with the XOP instruction set, via the vpperm and vpinsrd instructions:
We note that no 4-word subgroup of the ten permutations of BLAKE-256 requires words from
all four 128-bit blocks of the message; the most common occurrence is that two words come from
one block, and one word out of two other 128-bit blocks. For this case, we can use the following
approach:

m0 = _mm_perm_epi8(m0, m1, sel0);

m0 = _mm_insert_epi32(m0, m.u32[4], 3);

m1 = _mm_perm_epi8(m3, m1, sel1);

m1 = _mm_insert_epi32(m1, m.u32[5], 6);

m2 = _mm_perm_epi8(m0, m1, sel2);

m2 = _mm_insert_epi32(m2, m.u32[7], 1);

m3 = _mm_perm_epi8(m0, m1, sel3);

m3 = _mm_insert_epi32(m3, m.u32[14], 9);

The few cases where only two 128-bit blocks need to be accessed can be dealt with with a single
vpperm instruction.

The vpinsrd instruction is documented in Appendix B.

6.3 Message caching

Like BLAKE-512, BLAKE-256 reuses several permuted messages, namely four. Due to the smaller
number of redundant permuted messages and the smaller messages, this full state (4 × 4 × 128)
can be stored in eight YMM registers. This leaves the possibility of either storing all entries, or to
keep some in registers. Permuted messages are easily stored using the vinserti128 instruction:

// First 4 permuted elements

cache_reg = _mm256_inserti128_si256(cache_reg , buf1 , 0);

...

// Second 4 permuted elements

cache_reg = _mm256_inserti128_si256(cache_reg , buf1 , 1);

_mm256_store_si256 (& cache[r], cache_reg);

In rounds 10 and above, we can retrieve the cached permutations with a simple load and extract:

cache_reg = _mm256_load_si256 (& cache[r]);

buf1 = _mm_extracti128(cache_reg , 0);

...

buf1 = _mm_extracti128(cache_reg , 1);

Like for BLAKE-512, one should store the message words already XORed with the constants, to
save the extra XORs.

6.4 Performance estimates

As BLAKE-256 seems to marginally benefit from AVX2, we focused our performance estimation
on the AVX assembly implementation—the AVX2 is unlikely to be slower, as AVX is a subset of
AVX2. Excerpts from our AVX implementation are given in Appendix C.2.

To measure the speed of our AVX implementation on long messages, we reused tools from
SUPERCOP [1], and produced our executable as follows:

yasm -f elf64 b256.asm

$(CC) $(FLAGS) $(INCLUDE) -o measure hash.c b256.o measure-anything.c amd64cpuinfo.c \
measure.c -DCOMPILER=\"$(CC)\" -DLOOPS=3 -DSUPERCOP

where $(CC)=gcc, $(FLAGS)=-static -m64 -march=native -mtune=native -O2 -fomit-frame-pointer,
and $(INCLUDE) are SUPERCOP-related includes.

We ran benchmarks on an Intel Core i7 2630QM (2 GHz, Sandy Bridge architecture), and
measured a speed of 7.62 cpb. For comparison, at the time of writing the latest benchmarks from
eBASH on sandy08 (supercop-20110708) report BLAKE-256 running at 7.87 cpb (with the sse41
C implementation).

Surprisingly, message caching did not bring a significant speed-up. We will submit our code to
SUPERCOP for independent benchmarks on other machines.

References

1. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic Systems. http://

bench.cr.yp.to/ Accessed 24 August 2011.
2. Intel: Advanced vector extensions programming reference (June 2011) Document no. 319433-011.
3. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to the

SHA-3 competition (2008) http://www.131002.net/blake/.
4. Intel: C++ Intrinsics Reference (2007) Document no. 312482-002US.
5. Coke, J., Baliga, H., Cooray, N., Gamsaragan, E., Smith, P., Yoon, K., Abel, J., Valles, A.: Im-

provements in the Intel Core 2 Penryn Processor Family Architecture and Microarchitecture. Intel
Technology Journal 12(3) (October 2008) 179–193

6. Intel: Advanced vector extensions programming reference (March 2008) Document no. 319433-002.
7. AMD: AMD64 Architecture Programmers Manual Volume 6: 128-Bit and 256-Bit XOP, FMA4 and

CVT16 Instructions (November 2009)

8CPU details: Sandy Bridge (206a7); 2011 Intel Core i7-2600K; 4 x 3400 MHz.

http://bench.cr.yp.to/
http://bench.cr.yp.to/
http://www.131002.net/blake/

A The XOP instruction set

In 2007, AMD announced its SSE5 set of new instructions. These featured 3-operand instructions,
more powerful permutations, native integer rotations, and fused-multiply-add capabilities. After
the announcement of AVX, however, SSE5 was shelved in favor of AVX plus XOP, FMA4, and
CVT16.

The XOP instruction set [7] extends AVX with new integer multiply-and-accumulate (vpmac*),
rotation (vprot*), shift (vpsha*, vpshl*), permutation (vpperm), and conditional move (vpcmov)
instructions working on XMM registers. The rotations, in particular, are of obvious advantage to
BLAKE. The first chip implementing XOP is AMD’s FX-8150 Bulldozer (32 nm), first released to
the market on October 12, 2011.

B Reference of additional instructions

This section briefly documents the AVX2 instructions vextracti128, vpblendd, and vpinsrd

used in §§6.1 and §§6.2.
The vpinsrd instruction, also accessible by its intrinsic mm insert epi32, inserts one 32-bit

word into a specified position in a XMM register, as the following code illustrates:

uint32_t c[8], a; int imm;

c[imm] = a;

vpblendd, similar to the SSE4.1 pblendw instruction, permits the selection of words from 2 dif-
ferent sources according to an immediate index, placing them in a third destination register:

uint32_t a[8], b[8], c[8]; int sel;

for(i=0; i < 8; ++i)

if((sel >>i)&1) c[i] = b[i];

else c[i] = a[i];

vextracti128 (mm256 extracti128 si256) and vinserti128 (mm256 inserti128 si256) ex-
tract and insert an XMM register into the lower or upper halves of a YMM register. vextracti128
is equivalent to:

uint32_t a[8], c[4]; int imm;

for(i=0; i < 4; ++i) c[i] = a[i + 4*imm];

while vinserti128 is equivalent to

uint32_t a[8], b[4], c[8]; int imm;

for(i=0; i < 8; ++i) c[i] = a[i];

for(i=0; i < 4; ++i) c[i+4* imm] = b[i];

C Assembly implementations (excerpts)

This section presents excerpts from our assembly implementations. The full implementations will
be made publicly available.

C.1 Assembly implementation of BLAKE-512 for AVX2

Implementation of G, with permuted message in %3 and %4:

; Helper word rotation macro

%macro VPROTRQ 2

vpsllq ymm8 , %1, 64-%2 ; x << 32-c

vpsrlq %1, %1, %2 ; x >> c

vpxor %1, %1, ymm8

%endmacro

; ymm0 -3: State

; ymm4 -7: m_{\ sigma} xor c_{\ sigma}

; ymm8 -9: Free temp registers

; ymm10 -13: m

%macro G 2

vpaddq ymm0 , ymm0 , %1 ; row1 + buf1

vpaddq ymm0 , ymm0 , ymm1 ; row1 + row2

vpxor ymm3 , ymm3 , ymm0 ; row4 ^ row1

vpshufd ymm3 , ymm3 , 10110001b ; row4 >>> 32

vpaddq ymm2 , ymm2 , ymm3 ; row3 + row4

vpxor ymm1 , ymm1 , ymm2 ; row2 ^ row3

VPROTRQ ymm1 , 25 ; row2 >>> 25

vpaddq ymm0 , ymm0 , %2 ; row1 + buf1

vpaddq ymm0 , ymm0 , ymm1 ; row1 + row2

vpxor ymm3 , ymm3 , ymm0 ; row4 ^ row1

vpshufb ymm3 , ymm3 , ymm15 ; row4 >>> 16

vpaddq ymm2 , ymm2 , ymm3 ; row3 + row4

vpxor ymm1 , ymm1 , ymm2 ; row2 + row3

VPROTRQ ymm1 , 11 ; row2 >>> 11

%endmacro

Message loading:

%macro MSGLOAD 1

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm8 , [perm + %1*64 + 00]

vpgatherdq ymm4 , [rsp + 8*xmm8], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm9 , [perm + %1*64 + 16]

vpgatherdq ymm5 , [rsp + 8*xmm9], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm8 , [perm + %1*64 + 32]

vpgatherdq ymm6 , [rsp + 8*xmm8], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm9 , [perm + %1*64 + 48]

vpgatherdq ymm7 , [rsp + 8*xmm9], ymm14

vpxor ymm4 , ymm4 , [const_z + 128*%1 + 00]

vpxor ymm5 , ymm5 , [const_z + 128*%1 + 32]

vpxor ymm6 , ymm6 , [const_z + 128*%1 + 64]

vpxor ymm7 , ymm7 , [const_z + 128*%1 + 96]

%ifdef CACHING

%if %1 < 6

vmovdqa [rsp + 128 + %1*128 + 00], ymm4

vmovdqa [rsp + 128 + %1*128 + 32], ymm5

vmovdqa [rsp + 128 + %1*128 + 64], ymm6

vmovdqa [rsp + 128 + %1*128 + 96], ymm7

%endif

%endif

%endmacro

Diagonalization, undiagonalization, and a round:

%macro DIAG 0

vpermq ymm1 , ymm1 , 0x39

vpermq ymm2 , ymm2 , 0x4e

vpermq ymm3 , ymm3 , 0x93

%endmacro

%macro UNDIAG 0

vpermq ymm1 , ymm1 , 0x93

vpermq ymm2 , ymm2 , 0x4e

vpermq ymm3 , ymm3 , 0x39

%endmacro

%macro ROUND 1

MSGLOAD %1

G ymm4 , ymm5

DIAG

G ymm6 , ymm7

UNDIAG

%endmacro

C.2 Assembly implementation of BLAKE-256 for AVX

Our AVX code implements the message loading for each permutation separately, with option
support for message caching. Below we show the code for the second permutation:

%macro MSGLOAD1 0

;m[3] m[2] m[1] m[0] -> m[13] m[9] m[4] m[14]

;m[7] m[6] m[5] m[4] -> m[6] m[15] m[8] m[10]

;m[11] m[10] m[9] m[8] -> m[5] m[11] m[0] m[1]

;m[15] m[14] m[13] m[12] -> m[3] m[7] m[2] m[12]

; xmm7 xmm6 xmm5 xmm4 <- xmm13 xmm12 xmm11 xmm10

vpalignr xmm4 , xmm11 , xmm13 , 4 ; 7 6 5 | 4 15 14 13 | 12

vpinsrd xmm4 , xmm4 , [rsp + 9*4], 2 ; 4 9 14 13

vpshufd xmm4 , xmm4 , 00101101b ; 13 9 4 14

vpblendw xmm5 , xmm12 , xmm13 , 11000000b ; 15 10 9 8

vpinsrd xmm5 , xmm5 , [rsp + 6*4], 1 ; 15 10 6 8

vpshufd xmm5 , xmm5 , 01110010b ; 6 15 8 10

vpunpcklqdq xmm6 , xmm11 , xmm10 ; 1 0 5 4

vpinsrd xmm6 , xmm6 , [rsp + 11*4], 0 ; 1 0 5 11

vpshufd xmm6 , xmm6 , 01001011b ; 5 11 0 1

vpunpckhdq xmm7 , xmm11 , xmm10 ; 3 7 2 6

vpblendw xmm7 , xmm7 , xmm13 , 00000011b ; 3 7 2 12

vpxor xmm4 , xmm4 , [const_z + 1*64 + 00]

vpxor xmm5 , xmm5 , [const_z + 1*64 + 16]

vpxor xmm6 , xmm6 , [const_z + 1*64 + 32]

vpxor xmm7 , xmm7 , [const_z + 1*64 + 48]

%ifdef CACHING

vmovdqa [rsp + 16*4 + 1*64 + 00], xmm4

vmovdqa [rsp + 16*4 + 1*64 + 16], xmm5

vmovdqa [rsp + 16*4 + 1*64 + 32], xmm6

vmovdqa [rsp + 16*4 + 1*64 + 48], xmm7

%endif

%endmacro

The first ten rounds are implemented as:

%macro ROUND 1

MSGLOAD %1

G xmm4 , xmm5

DIAG

G xmm6 , xmm7

UNDIAG

%endmacro

When message caching is activated, the last four rounds are directly loading the message words
xored with constants from memory:

%macro ROUNDC 1

G [rsp + 16*4 + 64*%1 + 00], [rsp + 16*4 + 64*%1 + 16]

DIAG

G [rsp + 16*4 + 64*%1 + 32], [rsp + 16*4 + 64*%1 + 48]

UNDIAG

%endmacro

C.3 Assembly implementation of BLAKE-256 for AVX2

AVX2 allows the use of vpgatherdd for direct load of permuted message words from memory:

%macro MSGLOAD 1

vpcmpeqd ymm12 , ymm12 , ymm12

vmovdqa ymm8 , [perm + %1*64 + 00]

vpgatherdd ymm4 , [ymm8 *4+rsp], ymm12

vpcmpeqd ymm13 , ymm13 , ymm13

vmovdqa ymm9 , [perm + %1*64 + 32]

vpgatherdd ymm6 , [ymm9 *4+rsp], ymm13

vpxor ymm4 , ymm4 , [const_z + %1*64 + 00]

vpxor ymm6 , ymm6 , [const_z + %1*64 + 32]

%ifdef CACHING

%if %1 < 4

vmovdqa [rsp + 16*4 + %1*64 + 00], ymm4

vmovdqa [rsp + 16*4 + %1*64 + 32], ymm6

%endif

%endif

; Unpack into XMM

vextracti128 xmm5 , ymm4 , 1

vextracti128 xmm7 , ymm6 , 1

%endmacro

	BLAKE and 256-bit advanced vector extensions
	Samuel Neves cl@@auth and Jean-Philippe Aumasson

